Data Fabric: Soluciones convergentes para evitar un mosaico de herramientas complejas

Según Gartner, el Data Fabric es una arquitectura y un conjunto de servicios de datos que proporciona una funcionalidad consistente en una variedad de entornos, desde los locales hasta la nube. Data fabric simplifica e integra la gestión de datos en las instalaciones y en la nube, acelerando la transformación digital. ¿Cómo vamos a convencer a las empresas de que los datos son absolutamente transversales? ¿Cómo podemos realizar una valoración sólida de los datos? ¿Puede el data fabric ayudarnos en esto? ¿Podemos someter los silos de datos?

Gartner define el data fabric como un concepto de diseño que sirve como capa integrada (tejido) de datos y procesos de conexión. Una estructura de datos utiliza el análisis continuo de los activos de metadatos existentes para apoyar el diseño, el despliegue y el uso de datos integrados y reutilizables en todos los entornos, y es una necesidad para las organizaciones impulsadas por los datos: «El enfoque de la estructura de datos puede mejorar los patrones tradicionales de gestión de datos y sustituirlos por un enfoque más receptivo. Ofrece a los gestores de D&A la posibilidad de reducir la variedad de plataformas de gestión de datos integradas y ofrecer flujos de datos interempresariales y oportunidades de integración«.

Por eso es necesario un enfoque «todo en uno», es decir, una plataforma que pueda operar en toda la cadena de datos, desde la ingesta de datos hasta su explotación y visualización.

Un enfoque totalmente virtual (un sistema LDW basado en consultas) tiene la limitación de no poder materializar todos los procesos y, sobre todo, no permite una auditoría completa a lo largo del tiempo y en entornos muy regulados, como la banca y los seguros. El almacén de datos lógicos es un enfoque que puede resolver algún requisito específico, pero no tiene cabida en los procesos estructurados. El regulador no sólo puede preguntarnos cómo se realiza un determinado proceso de extracción y su linaje, también puede querer ver la réplica de un determinado proceso en una fecha concreta para ver todas las transformaciones y todos los procesos que han intervenido.

En contra de las herramientas Patchwork

Normalmente, cuando nos acercamos a una empresa para cualquier tipo de proyecto de datos, nos encontramos con un escenario típicamente fragmentado. Las empresas suelen incorporar herramientas según una lógica más bien comercial del momento histórico de la empresa. Así que es normal encontrar un mosaico de muchas herramientas diferentes: Tendremos fuentes de datos, diferentes almacenes de datos de distintos proveedores, motores analíticos, motores de reporting, cubos OLAP, etc. En el mejor de los casos, pueden proceder del mismo proveedor, pero aún así hay que resolver algunos problemas. ¿Cómo hacemos la automatización del flujo de trabajo? ¿Cómo gestionamos los metadatos? ¿Cómo documentamos los procesos? ¿Qué pasa con la responsabilidad? ¿Cómo respondemos al regulador? Es entonces cuando nos preguntamos a nivel de arquitectura que quizá deberíamos haber hecho de otra manera.

Un enfoque de gestión de datos empresariales (EDM), en el que todos los activos de datos se concentran en una única plataforma, sería la solución óptima. Además, según DAMA, la eliminación de los silos y la plena responsabilidad deberían estar en el centro de cualquier proyecto de datos. ¿Puede el concepto de Data Fabric ser una solución? Según Gartner, los data fabrics reducen el tiempo de diseño de la integración en un 30%, el despliegue en un 30% y el mantenimiento en un 70%, ya que los diseños tecnológicos se basan en la capacidad de utilizar/reutilizar y combinar diferentes estilos de integración de datos. Además, los data fabrics pueden aprovechar las habilidades y tecnologías existentes de los data hubs, data lakes y data warehouses, al tiempo que introducen nuevos enfoques y herramientas para el futuro. En este sentido, aunque un buen enfoque es disponer de una plataforma «todo en uno» con plenas capacidades de interoperabilidad, la implantación de un data fabric no requiere ninguna de las inversiones tecnológicas del cliente.

Articulo completo: https://www.linkedin.com/pulse/data-fabric-soluciones-convergentes-para-evitar-un-mosaico-iurillo/

Articulo original en ingles en DataVersity: https://www.dataversity.net/data-fabric-convergent-solutions-to-avoid-complex-tools-patchwork/